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It is generally accepted that Mn in the S2 state of the oxygen-
evolving center (OEC) is in the+3 and+4 oxidation states with
µ-oxo linkages.1,2 X-ray crystallography has provided the resolution
to model the OEC as a Mn3CaO4 cube connected to a fourth Mn
via a µ-oxo bridge.3,4 55Mn electron nuclear double resonance
(ENDOR) is highly consistent with the cuboidal structure.5,6

Di-µ-oxo-bridged MnIII -MnIV compounds are widely studied
models for this S2 state.1,7,8 Such models present a manganese
multiline EPR pattern fromS ) 2 MnIII and S ) 3/2 MnIV,
antiferrromagnetically coupled to each other to yield a net spinS
) 1/2.6 Electron spin echo envelope modulation (ESEEM) and
ENDOR of such MnIII -MnIV models have resolved hyperfine
couplings for MnIV and MnIII ,9,10protons,9 and liganding nitrogen.11

However, the ubiquitousµ-oxygens which physically couple the
MnIII and MnIV have yet to have their electronic structure and
electron-spin density elucidated.

Recently Tagore et al.1 showed incorporation of isotopically
enriched oxygen into the di-µ-oxo bridges of MnIII -MnIV models,
simply by slow exchange from trace water in dry CH3CN. For our
work the di-µ-oxo MnIII -MnIV bipyridyl dimer [(bpy)4Mn2

III/IV (µ-
O)2](ClO4)3 (bpy ) 2,2′′ bipyridine) was synthesized according to
literature methods.1,12A CH3CN (HPLC grade, Fisher) solution 2.5
mM in MnIII -MnIV bipyridyl dimer was prepared, and trace H2O,
either as H216O or as isotopically enriched H217O (84% atomic
enrichment in17O, Isotec.), was added at 1µL of water to 200µL
of CH3CN. The exchange time of the water oxygen into theµ-oxo
cross bridges at room temperature is about 20 min.1 An equal
volume of CH2Cl2 (Fisher, reagent grade) was added, and the
sample precooled at-80 °C for several hours. The precooled 70
µL sample, in a 2.0 mm i.d., 2.4 mm o.d. quartz EPR tube, was
glassed by plunging into liquid nitrogen. A glass inhibits paramag-
netic species from aggregating upon freezing to prevent these
aggregates from interfering with ENDOR. (CH3CN-DMF also
provided an even better glass. However, the DMF contained
reductants that produced MnII artifacts but did not hamper di-µ-
oxo 17O hyperfine measurements (see Supporting Information).)

X-band EPR (9.525 GHz) was carried out at 15 K as previously
described.13 CW Q-band (34.1 GHz) ENDOR was performed under
dispersion (ø′) and rapid passage field-modulated conditions at 2
K.13 A nucleus,Z, with I g 1, namely,17O (I ) 5/2) or 14N (I ) 1),
will have first-order ENDOR frequencies given asZν(

ENDOR ) |ZA/2
( Zν + 3ZP(2m - 1)/2|, where-I + 1 e m e I, ZA, andZP are
hyperfine and quadrupole coupling constants andZν is the nuclear
Zeeman frequency.14 At 12200 G17ν ) 7.03 MHz and14ν ) 3.76
MHz. For the17O features here,|17A/2| ≈ 17ν. The17ν-

ENDOR branch
is close to zero frequency and is not resolved because|17A/2| and

17ν cancel. The 17ν+
ENDOR branch occurs at a frequency of

approximately|17A/2 + 17ν| because as elsewhere,17O quadrupolar
splittings contribute only to line broadening.14,15 For 14N, the
14ν+

ENDOR branch, like the17ν+
ENDOR branch, is the one observable

by rapid passage CW Q-band ENDOR.13

The X-band EPR signal from the di-µ-oxo MnIII-MnIV bipyridyl
dimer (Figure 1A) was similar to that reported by Cooper et al.12

The outer features 300-600 G above the center (atg ) 1.99 and
∼3400 G) of the multiline pattern showed the most well-resolved
structure. There was significant broadening of this structure brought
on by the H2

17O. In Figure 1B, we compare second-derivative
X-band features, which show significant17O-induced broadening.

A comparison (Figure 2) of ENDOR signals from the MnIII -
MnIV bipyridyl dimers, respectively, exchanged with H2

16O and with
H2

17O, showed a new feature from the17O sample near 13.5( 1.0
MHz. This feature was best resolved∼300 to 600 G above and
below the Q-band EPR line center (which occurs atg ) 1.99 or
12240 G). The hyperfine coupling, derived from17ν+

ENDOR ) |17A/2
( 17ν|, was |17A| ) 12.8 ( 1.0 MHz. A feature near 10.5 MHz
occurred from all samples. We assign this as the liganding bipyridyl
14N nitrogen with an approximate hyperfine coupling of|14A| )
13.5( 0.3 MHz; corresponding|14A| couplings of the MnIII-MnIV

CYCLAM and TMPA complexes were, respectively, 9.2 and 11.2
MHz.11

Correlating EPR Line Broadening with 17O Hyperfine
Coupling. For twoequivalentI ) 5/2 17O-di-µ-oxo nuclei, an eleven-
line pattern is expected with peaks in the ratio of 1:2:3:4:5:6:5:4:
3:2:1 and a separation between peaks of|17A| (in Gauss). [Note
that 2.79|17A| (in Gauss)) |17A| (in MHz).] This packet shape is
well approximated by a Gaussian function whose peak width
between derivative extrema is 4.84‚|17A| (in Gauss).16 To replicate
EPR line broadening, we convoluted the narrower second-derivative
spectrum of the16O-di-µ-oxo MnIII -MnIV bipyridyl dimer with a
Gaussian broadening function and, in the Supporting Information,
with an exact 1:2:3:4:5:6:5:4:3:2:1 distribution. The convolutionally
broadened EPR spectra were compared (Figure 1B) with the
broadened spectrum of the17O-di-µ-oxo MnIII -MnIV bipyridyl
dimer. Best agreement was obtained with a Gaussian broadening
function having a 22( 3 G peak width between derivative extrema.
This width corresponded to an intrinsic di-µ-oxo 17O coupling of
|17A| ) 4.6( 0.6 (in Gauss)) 12.9( 1.8 (in MHz). The coupling
estimated from the EPR line width compares favorably with the
hyperfine coupling of|17A| ) 12.8 ( 1.0 MHz from ENDOR.

There has been little direct experimental hyperfine evidence on
the oxygen hyperfine structure atµ-oxo cross bridges. There
happens to be ENDOR hyperfine information from the bridging
µ-oxygen between Fe(III) (S ) 5/2) and Fe(IV) (S ) 2) in the di-
Fe cluster of ribonucleotide reductase.15 There the hyperfine
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coupling of∼23 MHz is nearly double that measured here for the
MnIII -MnIV bipyridyl dimer. The di-Fe cluster couplings should
be larger because Fe tends to be more covalent than Mn and because

theS) 5/2 ferric ion has a spin-containing d(x2-y2) orbital directed
for σ bonding toward the oxygen 2s orbital. Thisσ bonding should
lead to sizable17O Fermi hyperfine coupling, whereas, the di-Mn
system has no such spin-containing d(x2-y2) orbital. Antiferromag-
netic coupling between paramagnetic metals depends on covalent
electron-spin transfer through bridging ligands.17 DFT (density
functional theory) computations on di-µ-oxo-MnIII -MnIV systems
indirectly utilize theµ-oxo covalent spin transfer to predict MnIII -
MnIV antiferromagnetic coupling.18,19 The present work provides
experimental underpinnings for testing future high level DFT
calculations that give a comprehensive prediction of spin density,
di-µ-oxo hyperfine coupling, and MnIII -MnIV antiferromagnetic
coupling.
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Supporting Information Available: X-band EPR spectra are
provided from the MnIII-MnIV bipyridyl dimer in CH3CN-DMF
glassing solvent. A comparison is provided of line broadening simula-
tions due to a Gaussian packet, a di-17O 1:2:3:4:5:6:5:4:3:2:1 packet,
and a mono-17O 1:1:1:1:1:1 packet. This material is available free of
charge via the Internet at http://pubs.acs.org.
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Figure 1. (Spectra A) First-derivative X-band EPR spectra of di-µ-oxo
MnIII-MnIV bipyridyl dimers exchanged with H216O (black) and H217O (red)
in CH3CN-CH2Cl2, recorded atT ) 15 K, 6 G field modulation, 100 s
signal averaging with a 2000 G field sweep, 2 mW microwave power, EPR
frequency) 9.525 GHz. (Spectra B) Experimental second-derivative X-band
EPR spectra of the same dimers exchanged with H2

16O (black) and H217O
(red) and recorded in the 3700-4100 G range using 3 G field modulation;
the blue overlay shows that the EPR spectrum from the di-µ-oxo-17O dimer
can be obtained from the narrower line di-µ-oxo 16O dimer by convolution
of that narrower spectrum with a Gaussian broadening function (of 22 G
width between derivative extrema) using the Origin 7.0 data analysis
program.

Figure 2. We present ENDOR of MnIII-MnIV bipyridyl dimers exchanged
with H2

16O (black) and H217O (red) in CH3CN-CH2Cl2 and in CH3CN-
DMF glasses. The fields in the figure from top to bottom are approximately
500 and 600 G belowg ) 1.99 and approximately 300, 400, and 500 G
aboveg ) 1.99. ENDOR conditions: adiabatic rapid passage,T ) 2 K,
microwave power) 0.2µW, 100 kHz mod) 5 G ptp, time constant) 90
ms, radio frequency power≈ 20 W, radio frequency sweep rate) 2 MHz/
s, averaging time/spectrum) 1000 s,νEPR ) 34.10 GHz.

C O M M U N I C A T I O N S

J. AM. CHEM. SOC. 9 VOL. 129, NO. 39, 2007 11887


